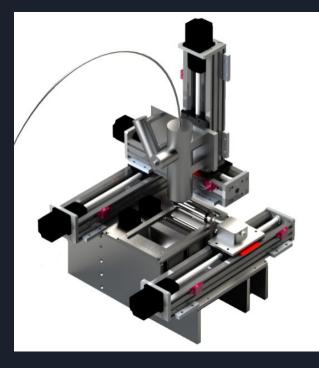
3D Metal Printer

SDMAY19-03

Client and Faculty Advisor: Dr. Timothy Bigelow **Members:** Alvin Rymash, Ariel Rizhsky-Yakobson, Armand Hernandez, Jacob Gosse, Thomas Waters


Contributions of each team member

Thomas Waters - Engineering lead, Embedded systems Arik Rizhsky - Embedded Systems Armand Hernandez- Software design and integration Jacob Gosse - Sensor integration, wiring/connectors Alvin Rymash - Sensor integration, wiring/connectors

Problem Statement

To design and build an affordable 3D metal printer for NDE research

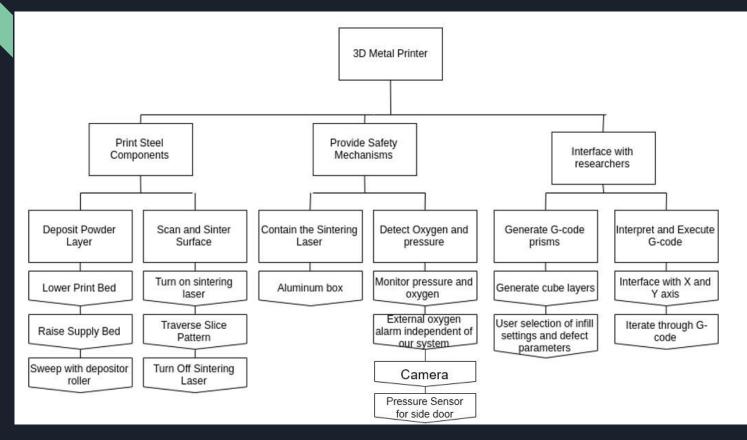
1. Requirements

Functional Requirements

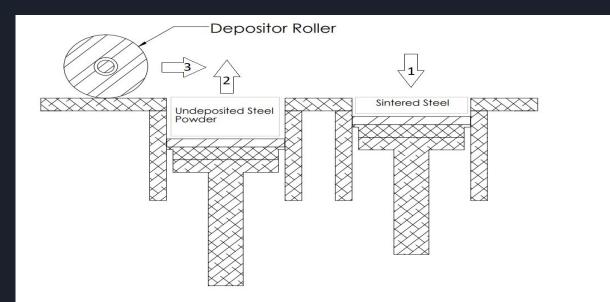
- 3 lasers
 - 1064 nm 200 W melt laser
 - Ultrasound laser
 - 1550 nm laser interferometer
- Roller to deposit powder from powder bed to print bed
- Powder bed which moves up in order to deposit a new layer of powder
- Print bed which moves down after each layer is sintered by the laser
- Collection bin which collects excess powder not deposited on the print bed
- Any place with powder must be enclosed in a sealed chamber which can withstand a vacuum and be filled with nitrogen or argon gas
- Pressure, temperature, and oxygen sensors placed in vacuum chamber for monitoring and safety hazards

Non-functional requirements

- Print speed
- Size of the vacuum chamber
- Modifiable code
 - well documented and understandable to allow future users to edit easily

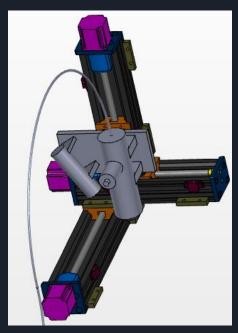


High-level requirements

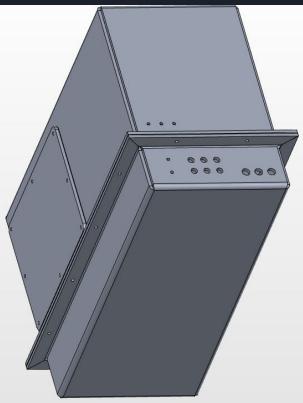

- Many moving pieces to be placed in a sealed, environmentally controlled chamber
- Environmental hazards such as dust interfering in the closed environment
- Monitoring constraints, as the system needs to be closed. Potential solutions:
 - \circ Window
 - Camera
 - Mirror

2. System Design and Development

Concept Diagram



Detailed Design: Depositing Powder


Detailed Design: Sintering Assembly

- Attached to three Velmex stepper slide motors
- Random movement
 - Sinters in small, ~1cm squares
 - Avoids overheating

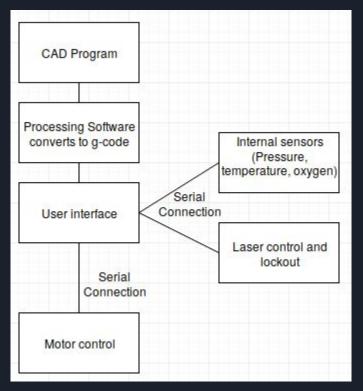
Detailed Design: Vacuum Chamber

- Holes for wires
 - Sensors
 - Cameras
 - \circ Motors
- Removable panel

Detailed Design: Sensor Integration

- Internal Oxygen Sensor
 - AMI 2001LC Trace Oxygen Analyzer
- External Oxygen Alarm
 - BW Honeywell Clip 2.0
- Internal Pressure and Temperature Sensor
 - SEEED Studio Grove High Accuracy Barometer
- Camera
 - 700 TVL Waterproof Color Day/Night Camera

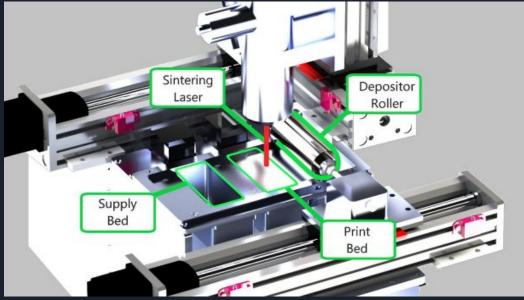
Detailed Design: User Interface

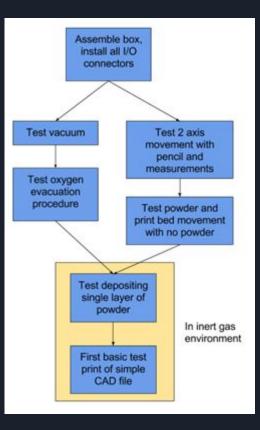

• Made in Visual Studio C#

🔳 CubeGeneratorWindow 🚽 🗆	×				MainWindow			_		×
Spot size:					Temperature:	Pressu	ire:	Oxyge	n:	
Layer thickness:										
Height:		II 3D Metal Printer	- [0.0	0.0	5. C	0.0		
Number of perimeter lines (layer):		30 METAL PI								
Hatch direction alternation:	~									
Infill square size:					Import GCode	Generated Velmex C	Commands			
Number of perimeter lines (infill):		Cube generator	G-Code Inter	preter	Motor Speed: 500		1: F,PM-1,S2M25000,S3M0,(I3		0.1	^
					Generate Commands	Execute Command	1: F,PM-1,S2M17678,S3M1767)R	
Number of infill squares (x):						Selection	1: F,PM-1,S2M0,S3M25000,(I3 1: F,PM-1,S2M17678,S3M1767		P	
Number of infill squares (y):						ACC/2010/01/04-010	1: F,PM-1,S2M17078,S3M170		Net .	
Infill square order:	~						1: F,PM-1,S2M17678,S3M1767)R	
	efect?						1: F,PM-1,S2M0,S3M25000,(I3	1M0,12M0,)R		
Defect size (x, y, z):							1: F,PM-1,S2M17678,S3M1767)R	
							1: F,PM-1,S2M25000,S3M0,(I3		P	
Defect location (x, y, z):							1: F,PM-1,S2M17678,S3M1767 1: F,PM-1,S2M0,S3M25000,(I3		JR	
All distance units i	n mm					Execute All	1: F.PM-1.S2M17678.S3M1767)R	~
Close Export gC	ode					in the second second				

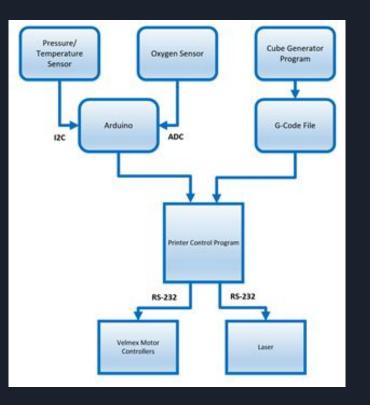
Hardware/Software/Technology Platforms used

- GUI software C#, Visual Studio, STL file input, g-code
- Stepper motor controllers Velmex hardware, serial commands
- Sensor integration Arduino
- CAD software Solidworks, GrabCAD
- Slicer software- Slic3r


Architectural Diagram, Design Block diagram



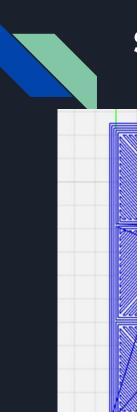
3. Implementation

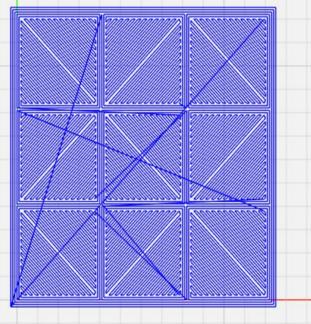


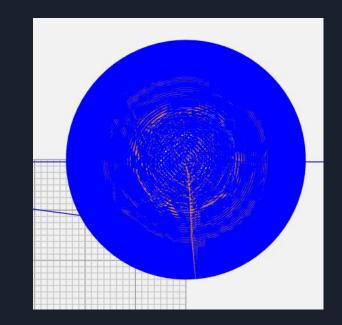
Implementation Diagrams

Sensor Implementation

Test-Plan


- Interface testing
 - Sensor readings
 - Current status
- Functional testing
 - 2D Box (Complete)
 - \circ 3D Cube
 - Other basic shapes
 - \circ CAD Files
- Non-Functional testing
 - Speed
 - Ease of use


Unit Testing/ Interface Testing


- Camera
- Barometer
- Gcode
- Velmex commands

System Integration Testing

5. Project and risk Management

Proposed Project Schedule

Tasks	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17	W18	W19	W20	W21	W22	W23	W24
Stepper Motor Research																								
Powder Application Research																								
Laser Mounting Research																								
Understanding Previous Groups's Work																								
Testing Previous Group's Work																								
Stepper Motor System Testing																								
Powder Roller Testing																								
Container Pressure Testing																								
Container Argon/Nitrogen Testing																								
Sensor Research																								
Sensor Testing																								
Saftey System Research																								
Saftey System Testing																								
Melt Testing																								
Code Research																								
Bug Testing																								
System tweaking and improvements																								
Software Implementation for CAD software																								
Full Project Testing																								

Actual Project Schedule

Tasks	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17	W18	W19	W20	W21	W22	W23	W24
Stepper Motor Research																								
Powder Application Research							_																	
Laser Mounting Research																								
Understanding Previous Groups's Work																								
Testing Previous Group's Work								1											_					
Stepper Motor System Testing						-																		
Powder Roller Testing																								
Container Pressure Testing																						1		
Container Argon/Nitrogen Testing																								
Sensor Research																								
Sensor Testing												_					(
Saftey System Research																	1							
Saftey System Testing		1																						
Melt Testing		<u> </u>																						
Code Research																								
Bug Testing								1 1														A #1	úl	
System tweaking and improvements																								
Software Implementation for CAD software	re																							
Full Project Testing																								

Risks and Mitigation

- Project lost two mechanical engineers
- Problems with putting the printer together
- The 1064nm 200 W melt laser needed the proper power cable
- Loss of a team member

6. Conclusions/Lessons learned

- Group organization and communication
- Design constraints
- Real-world/Project constraints

Questions?

7. References

- 1. Brand, Steven. "5 Major Benefits of Additive Manufacturing You Should Consider." 5 Necessary Lean Manufacturing Tools, 12 Apr. 2017, www.cmtc.com/blog/benefits-of-additive-manufacturing.
- 2. Thompson, Mary, et al. "Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints." NeuroImage, Academic Press, 25 June 2016, <u>www.sciencedirect.com/science/article/pii/S0007850616301913</u>.
- 3. Gao, Wei, et al. "The Status, Challenges, and Future of Additive Manufacturing in Engineering." NeuroImage, Academic Press, 17 Apr. 2015, <u>www.sciencedirect.com/science/article/pii/S0010448515000469</u>.
- 4. Everton, Sarah, et al. "Review of in-Situ Process Monitoring and in-Situ Metrology for Metal Additive Manufacturing." NeuroImage, Academic Press, 23 Jan. 2016, <u>www.sciencedirect.com/science/article/pii/S0264127516300995</u>.
- 5. Naden, Clare. "Getting the Packaging Right: International Guide Just Updated." Developing Standards, 3 Oct. 2018, <u>www.iso.org/</u>.
- 6. Waller, Jess, et al. "Nondestructive Evaluation of Additive Manufacturing State-of-the-Discipline Report." NASA, NASA, 1 Nov. 2014, ntrs.nasa.gov/search.jsp?R=20140016447.
- 7. "270-2006 IEEE Standard Definitions for Selected Quantities, Units, and Related Terms, with Special Attention to the International System of Units (SI)." IEEE-SA The IEEE Standards Association Home, 29 Sept. 2006, standards.ieee.org/standard/270-2006.html.
- 8. "1100-2005 IEEE Recommended Practice for Powering and Grounding Electronic Equipment." IEEE-SA The IEEE Standards Association Home, 24 May 2006, standards.ieee.org/standard/1100-2005.html.
- 9. "299-2006 IEEE Standard Method for Measuring the Effectiveness of Electromagnetic Shielding Enclosures." IEEE-SA The IEEE Standards Association Home, 28 Feb. 2007, standards.ieee.org/standard/299-2006.html.

7. References

10. "754-2008 - IEEE Standard for Floating-Point Arithmetic." IEEE-SA - The IEEE Standards Association - Home, 29 Aug. 2008, standards.ieee.org/standard/754-2008.html.

11. "ISO/ASTM 52901:2017 (ASTM F 42) - Additive Manufacturing -- General Principles -- Requirements for Purchased AM Partsational Organization for Standardization." Developing Standards, International Organization for Standardization, 20 July 2017, <u>www.iso.org/standard/67288.html</u>.

12. "ISO 17296-2:2015 - Additive Manufacturing -- General Principles -- Part 2: Overview of Process Categories and Feedstock." Developing Standards, International Organization for Standardization, 30 Jan. 2015, <u>www.iso.org/standard/61626.html</u>.

13 "ISO 17296-3:2014 - Additive Manufacturing -- General Principles -- Part 3: Main Characteristics and Corresponding Test Methods." Developing Standards, International Organization for Standardization, 22 Aug. 2014, www.iso.org/standard/61627.html.

14. "ISO 17296-4:2014 - Additive Manufacturing -- General Principles -- Part 4: Overview of Data Processing." Developing Standards, International Organization for Standardization, 26 Sept. 2018, <u>www.iso.org/standard/61628.html</u>.

15. "ISO/ASTM 52900:2015 - (ASTM F2792) Additive Manufacturing -- General Principles -- Terminology." Developing Standards, International Organization for Standardization, 11 Sept. 2017, <u>www.iso.org/standard/69669.html</u>.

16. "ISO/ASTM 52910:2018 (ASTM F42) - Additive Manufacturing -- Design -- Requirements, Guidelines and Recommendations." Developing Standards, International Organization for Standardization, 20 July 2018, <u>www.iso.org/standard/67289.html</u>.

17. "ISO/ASTM 52921:2013 (ASTM F2921) - Standard Terminology for Additive Manufacturing -- Coordinate Systems and Test Methodologies." Developing Standards, International Organization for Standardization, 10 July 2018, www.iso.org/standard/62794.html.